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1. Phys. A Math. Gen. 28 (1995) 2785-2797. Printed in the UK 

Maximal stability in unsupervised learning 

A Mietzner, M Opper and W Kinzel 
Physikalisches Institut. Julius Maximilians Univenit& Am Hubland, D-97074 Wiirzburg. 
Germany 

Received 19 September 1994 

Abstraet A perceptron can classify a set of random patterns into two groups. The maximal 
gap beween the two groups is calculated using replica theory. The replica-symmetric solution is 
shown 10 be unstable and gives results which a x  qualitatively different f" the one-step replica- 
symmetry breaking solution (RSEI). The results of a calculation without the replica method illp; 
given, yielding an exact upper bound for the gap which almost coincides with the RSBI solution. 

Finding the classi6cation of a set of patterns with a maximal gap is a difficult combinatorial 
optimization problem. An algorithm is developed which gives large gaps. 

1. Introduction 

In recent years the learning ability of neural networks has been extensively -studied. 
Unsupervised learning has recently attracted growing attention for its ability to adapt to the 
environment in a self-organized way [I]. The environment only provides the input, whereas 
no output is specified. In these cases unsupervised learning techniques are frequently used 
to discover an underlying structure in the data set. 

Typical tasks are the search for meaningful directions in the input data, called principal 
component analysis [Z, 31 and the detection of clusters, mostly achieved by unsupervised 
competitive learning techniques, for an overview see [I]. 

In this paper we focus on the aspect of the stability of classifications, when neural 
networks with sign activation functions are used. Then stability is a measure of how much 
input noise can be tolerated without affecting the classification performed by the network. 
In unsupervised learning particularly stable mappings can be achieved by assigning an 
appropriate output to every given input. Thus maximizing the stability can be regarded as 
an interesting criterion to explicitly improve the noise tolerance of a given data processing 
task 141. 

This is not only useful when a network is supposed to classify a set of input data, but 
it is also interesting in the context of supervized learning. Suppose, for example, that a 
mapping from noisy input onto prescribed output is to be realized by a multi-layer feed- 
forward network. Unsupervised learning can be used to choose a maximally stable first 
hidden-layer representation of the inputs and thereby prevent the noise from penetrating 
further into the network. 

This, however, raises two general questions. What is the maximal stability to be 
achieved? And how can the corresponding internal representation be obtained? 

We will investigate these questions in the following with respect to the elementary 
building block of a multi-layer feed-fonvard network, the perceptron. 

0305470/!95/102785+13$1950 @ 1995 IOP Publishing Ltd 2785 
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Figure 1. Two-dimensional projection of a 200-dimensional input data space. The 400 points 
were drawn from a Gaussian distribution centred at the origin The class labels obtained bv our 
algorithm are indicated as filled and open poinci respectively, yielding a large gap. 

The perceptron has N input units connected with one binary output unit via N continuous 
couplings J;. p input pattems E” of dimension N a e  presented, but no associated outputs. 

Geometrically, the weight vector J of a perceptron defines a separating plane in N- 
space, classifying every input E” according to 

N 
U” = sign(h”) with the internal field h” := .Ij:,? 

j=1 

The stability is defined as the distance of the input pattern closest to this plane. 

where K is a measure of how much input noise is suppressed before the output changes, 
since the noise on a particular pattern has to alter the field h” by at least K before it is 
mapped onto a different output. 

Apart from our interest in noise suppression the contents of this paper can just as well 
be viewed as an investigation of the following geometrical problem (cf figure 1). Suppose 
p points in an N-dimensional space are randomly chosen from a known distribution centred 
around the origin. We then ask for the average size of the largest linear gap containing the 
origin, when p and N tend to infinity such that the 1oading.u = p / N  remains finite. The 
size of this gap is denoted by 2 ~ .  The normal vector on the separating plane is J. The 
class of pattems above (below) the plane is projected onto 1(-1). 

We prefer the network description in the following, switching to the geometrical 
interpretation whenever it enhances our understanding. 

The stability (gap size) K and the couplings J of the perceptron (orientation of the 
separating plane) will be investigated using the analytical methods of statistical mechanics 
as well as computer simulations. 
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Section 2 of this paper contains the calculation of the maximal stability within the 
replica theory using replica symmetry (RS) and one-step replica-symmetry breaking (RSBI). 
Moreover, the results of an annealed approximation are shown, which almost coincide with 
the RSBl outcome. In section 3 we will address the problem of explicitly obtaining the 
optimal weights J and optimal outputs U E ( - 1 , l ) p  for a given set of patterns. An 
algorithm achieving close to maximal stabilities is developed and discussed in detail. A 
summary is presented in section 4. 

Throughout this paper we deal exclusively with uncorrelated-ven unstructured-input 
distributions. We ask the reader to keep in mind that structured distributions, i.e. redundancy, 
would even increase the advantages of unsupervised learning [l]. The proposed algorithm 
is very useful, particularly when applied to data with a built-in structure [SI. 

2. Analytical approach 

The maximal stability of the problem discussed above can be calculated extending Gardner’s 
method [6]. For unsupervised learning the phase space of dynamical variables has to be 
enlarged, now consisting of all the couplings J on the unit hypersphere and all output 
configurations U E [-1, l]p. This introduces discrete dynamical variables to be optimized. 
The partition function reads 

where 

and @ ( x )  is the Heaviside step function. The maximal stability K is defined to be the highest 
value of the parameter K‘, for which Hx, = 0 can still be achieved. Therefore we will only 
be interested in the ground state of H,,, corresponding to the limit f l  -+ W. In this limit 
the constraint (1) is satisfied which states the dependence between J and U. 

Assuming that In Z is self-averaging with respect to the distribution of inputs, (In 2) 
can be calculated using the replica method [71, with 

(5) 
d 

W O  dn 
{In z) = lim -(z”) 

where (. . .) denotes the average over the inputs (F], see the appendix. 

2.1. Replica-symmetric theory 

2.1.1. Maximal stability. The calculation assuming replica symmetry (RS) is outlined in 
the appendix, since it will serve as our starting point for further investigations and has never 
been published [SI. The RS result, however, 

(6) 
dt 0 

(aES))-’ = 2 1, Dt (t  + K)’ with Di := - exp [-t*/Z] Jz 
has been mentioned in [9].  the dependency of the maximal stability K on the loading 
CY = p / N  is shown in figure 4. 

The optimal choice of outputs, i.e. class labels of the patterns, gives rise to a non- 
vanishing gap between the two classes for every finite loading 01. The asymptotic behaviour 
for a tending to infinity is given by K - 
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2.1.2. Distribution offieldr. 
the field h--or equivalently a pattern with distance h from the separating plane-reads 

Given the stability K' the probability density w,.(h) to find 

(7) 
Js,..rxs 

exp[-ikh]B(k), with 8 ( k )  = (exp[ikh"=l] 

where the characteristic function B can be calculated as 

Since (. . .) again denotes the quenched average over all pattern sets, no particular pattern is 
distinguished from the others. Therefore calculating the distribution of the field of pattern 
number one means no loss of generality. 

By -J='.u.' we denote a thermodynamic average, where only combinations of the 
dynamical variables J and U are allowed to contribute, which correspond to stabilities of 
at least K'. For arbitrary K' equal to or below the maximal stability K this is achieved by 
evaluating the thermodynamic average in the limit p + W. 

To perform the quenched average over the patterns we need another replica trick 
Z-' = Iim z"-' . (9) n+O 

Note, that only Z-' in (8) is replicated n - 1 times. Thereby we again get the n- 
times replicated partition function (AI), but with an additional, not replicated, factor of 
exp(ihI=:) inside the integrals. k can be interpreted as an external field that probes the 
field of pattern 1 in replicon 1. In the thermodynamic l i t  N + CO this perturbation of 
just one of U N  fields becomes negligible with respect to the saddle-point equations, keeping 
their solutions the same as in the preceeding section. After taking the limit n + 0 these 
solutions for the order parameters can be used in the limit p + w. Then the limit q + 1 
corresponds to maximal stability. 

Nevertheless, due to the different replica trick (9), compared to (5). the perturbation 
term does determine the characteristic function 8. The final Fourier transformation results 
in 

e-h'/2 

W,(h)  = [ Q ( K )  - i] 8(lhl - K )  f @(lhl - K )  - 6' (10) 

A &peak at Ihl = K and a Gaussian tail for Ihl > K emerges, qualitatively similar to the 
field distribution of maximal stability for random outputs [IO]. The crowding of patterns at 
h = i K  in figure 1 might give an idea of the presence of &peaks. The distribution (IO) can 
also be derived by probabilistic arguments [ 1 I], assuming-just as in the RS theory-the 
existence of a unique optimal solution for (JV', U;). In this case the peak weight equals 
the probability of an additional pattern cp+' not satisfying the constraint hP+' z K ,  which 
can be calculated easily. 

However, from a geometrical point of view the &peaks correspond to patterns, that lie 
exactly on the two planes, which are a distance ZK apart and parallel to the separating plane. 

The fraction of patterns on these two planes is given by a ~ f f  = ( Y [ Z Q ( K )  - 11. Inserting 
K ( ( Y )  from (6) we find an unbounded growth of - ( Y ~ / ~ ,  when (Y tends to infinity, see 
figure 3. 

This indicates that the RS theory is not exact, since (Y,E > 1 means that more than 
N patterns lie on two parallel planes implying that every N subset of them is linearly 
dependent. Therefore the set of patterns would not be in a 'general position', stating a 
contradiction to uncorrelated randomly chosen inputs [I]. Thus the RS result for K ( ( Y )  

has at least to be rejected for loadings above (Y z 1.14. 
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2.1.3. Local stabiliry analysis. Following standard calculations [6.12] we find that the 
replica-symmetric saddlepoint is IocaIly stable wherever the de Almeida-Thouless condition 
a y l n  c 1 is satisfied. The evaluation of yl and y2 in the limit ,9 + 00 and q + 1 with 
the usual scaling fi(1 - q )  = U can be cast into the same form as in Bouten’s paper [13] 

(11) 

[A&, U )  - t] =:~’ 

’0  for 

( - K  - f )  @(& - K - t) for 
0 for 

(+K - t )  @(& - K f t )  for 
0 for 

lane above ti RS K ( U )  result, the 
function ho(t, U )  - f exhibits two discontinuities at t = -K + & ind f = K - 6, 
respectively. For & > K corresponding to points on and below the RS K ( U )  curve, a 
discontinuity persists at t = 0. Therefore the derivative in (11) yields at least one 8-function 
which, being squared, lets the integral diverge to plus infinity. So no matter what result for 
K @ )  was obtained in RS, it is locally stable only for a =.O or K = 0. Consequently, the 
whole RS result (6) is unstable. 

The instability obtained indicates disconnected solution volumes in J-space for all 
loadings, which must be due to the fact that in unsupervised learning diferent output 
configurations yield the same maximal stability realized by diferent couplings. Only for a 
j’ixed output configuration (supervized problem) is the solution J unique [14]. 

2.2. Replica-gmmetry breaking 

From the instability of the whole RS solution and the pathological behaviour of a;: we 
expect a strong replica-symmetry breaking (RSB) effect. We seek to improve the RS result 
(6) by applying the first step of Parisi’s hierarchical RSB scheme [7] to (A4). The n 
replica are grouped into n/m clusters of m replicas. The overlap between replicas within 
the same cluster is described by 41. whereas replicas from different clusters have the 
overlap 40. leading to the common order parameters 40, q1 and m [15]. Similarly to related 
problems [16] we get 

(13) 
1 

-(In ZT=O) = E ~ t r ~ ~ . ~ , . ~  m-’ [@so +SI] N 
where 

Analogous with the RS calculation the maximal stability K can be obtained directly by 
q1 + I-. In this limit a diverging SI would dominate the finite contribution from SO 

leading to order-parameter values independent from a and K .  Therefore the usual scaling 
ansatz of m + 0 so that c = m/(l - ql) remains finite, is used to resolve every imbalance 
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between SO and SI. Replacing q1 through this ansatz the saddlepoint equations need to 
be solved in the limit m + 0. For reasons of stability [17] the solutions q;, c* have to 
correspond to a minimum: 

with 

The minimum in (14) has to be zero in order to satisfy the saddle-point equation for m 
in the limit m + 0. This immediately determines the critical loading a,"' in an implicit 
way: 

with s(q; ,  c*) from (15). 
We find a solution leading to K ( U )  considerably below the RS result (figure 4). The 

asymptotical behaviour for a! tending to infinity is qualitatively different from the RS 
asymptotic, it now reads K - a-l 11na + 1 + o((ha!/a!)*)~. 

The order parameters c and 40 are plotted against a! in figure 2. Interestingly qo tends 
to zero for finite 01. The flatness of the minimum corresponding to our solution is such that 
the graphs shown in figure 3 and figure 4 could just as well be produced with fixed qo = 0 
and minimizing merely with respect to c. 40 = 0 indicates that the solutions in J-space 
are not correlated, similar to the situation in the parity machine [I81 and the random energy 
model [19]. 
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Figore 2. Order parameten c/lOO (broken curve) and qo (full curve) of the RSBI solution versus 
loading U. 
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Figure 3. The fraaion 
and OK method (full curves) versus loading (1. 

of pmems at smallest distance predicted by RS (broken m e ) ,  RSBl 
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Figvre 4. Maximal stability versus loading U foroptimal oulputs calculated in RS (bmken curve), 
within R S B ~  (full curve) and the exact uppu bound from the OK method (full curve). The whole 
RS solution is unstable. Simulations investigating the performance of the HoptTmn algorithm 
were performed with max ( p .  N) = 400 using a deterministic dynamic. Stars (crosses) show the 
stability I (wed. after (before) the optimizatjon of the couplings by AdaTron. For comparison 
the maximal stability for m d o m  outputs in the SupeNized case [6] is also shown (bmken curve). 

2.2.1. Distribution ofjields. 
In~order to make 

It was cifi which already proved most of the RS result unstable. 
accessible we calculated the distribution of fields, closely following 
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the description for the RS case. 
The explicit form of w,(h, qz,  c*),  still depending on the order parameters, is not very 

illuminating. It also shows two 8-peaks and Gaussian tails, but with different prefactors 
compared to the RS field distribution. The sum of the 8-peaks times a again yields asB1 
shown in figure 3. We find agB1 c 1 to be satisfied for arbitrary loading a. So the RSBI 
result is in agreement with the inputs being in the ‘general position’. 

Although we cannot conclude from agB’ c 1 that the RSBl solution is stable, we refrain 
kom a lengthy local stability analysis, for two reasons. Firstly, focal stability of a replica 
solution need not be a reliable criterion for the exactness of the result. Secondly we were 
able to obtain a more meaningful result than the one from RSBl by a method due to Opper 
and Kuhlmann (OK method). 

2.3. An exact upper bound 

In this section we will quote the results of an alternative and very powerlid method due 
to Opper and Kuhlmann (OK method) for obtaining the maximal stability analytically. The 
method will be discussed in detail elsewhere [ZO]. The obtained results--if not exact-are 
at least an exact upper bound for the maximal stability. 

Interestingly the resulting functions K@) and LY&Y) are very close to the RSBI solutions, 
figures 3 and 4. The relative deviations are at most 2% and disappear for cf + W. 
Furthermore, the RSBl result satisfies the upper bound for any a. 

3. Algorithmic approach 

3.1. Formulation of rhe problem 

The optimal couplings of the perceptron with maximal stability can generally be written as 

(17) 
J = - C  l P  ” 

X U €  
“ = I  N 

where xu is called the embedding strength of pattern U [IO, 211. 

substituting (17) into (2). It is equivalent to minimizing the quadratic form 
The task to maximize the stability can be restated in terms of the embedding strengths, 

with respect to I and U E [-l,l}P under the constraints 

Then the stability is given by K = l / a  (cf equation (2)). 
If the outputs U” were known (supervized case), the constraints (19) would become 

h e a r  and a unique solution would exist [14], which, for example, could be found by the 
AdaTron algorithm [21]. 

But in the unsupervised case p patterns E” in N-space are given and an optimal output 
assignment to these points has to be found. For illustration one may think of p given points 
E” in N-space, which ought to be painted either black (U” = 1) or white (U” = -1) in 
such a way that the maximal gap between the black and the white set of points emerges 
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(cf figure 1). This is a difficult task, because 2P possible configurations exist and changing 
one single colouring (output) may completely alter the orientation of the separating plane 
and the maximal size of the gap. 

However, finding the outputs with maximal stability is a problem of combinatorial 
optimization. For a given set of U” the corresponding stability has to be obtained by the 
AdaTron (or similar) learning algorithm. Hence most of the combinatorial optimization 
algorithms like simulated annealing [22] would require an immense computational effort. 

A new method to find labels U‘ with high stability is proposed in the following. 

3.2. The HopjTron algorithm 

The main idea to determine good output configurations comes from the consideration of 
the constraints (19). For the moment we neglect the possibility to optimize I and set all 
xu = 1, corresponding to Hebb couplings in the perceptron, see (17). The constraints take 
the following form: 

. Y  

Let us now interpret U as the spin state of an attractor neural network with couplings 
C,, between spins U” and up. This network is a Hopfield net and has been thoroughly 
studied [23]. In that context (20) describes the conditions for a metastable state,,jnce the 
internal field of the Hopfield net h; := &(,) CPvu” and the spin U, := sign(W) at site 
p have the same sign. 

Thus metastable states U of the Hopfield net provide outputs U” for the perceptron, 
which satisfy the constraints (19). So we achieve a non-zero stability K = l / a  for 
every finite loading a. This is remarkable, since we have not yet put any effort into the 
optimization of x. Or in other words, we have obtained a classification U, which is linearly 
separable even for a perceptron with Hebb couplings (x” = 1). These outputs must indeed 
be special, since random outputs are not linearly separable for any ,non-zero loading, when 
Hebb couplings are used [l]. 

Metastable states U can easily be constructed by a relaxation process from a random 
initial state. With such a classification we optimize the couplings (or x, respectively) to 
achieve maximal stability. We used the AdaTron algorithm [21] for this last step, calling 
the resultine algorithm Hooffron. 

I L  

We shall briefly summarize’the Hopffron algorithm: 

Step (i): Calculate the correlation matrix C (equation (19)). 
Step (ii) (Hopf-): Use~some dynamics to relax from a random initial state into a 
metastable state U of the Hopfield net with couplings C,, and C,, = 0. The resulting 
U” values are the classification labels of the patterns c. 
Step (iii) (-Tron): Construct the perceptron vector J realizing this classification with 
maximal stability using the AdaTron algorithm. 

The resulting stabilities with Hebb couplings (before step (iii)) and with optimal 
couplings (after step (iii)) are shown in figure 4, see also figure 1. This iast (supervized) 
learning step yields a stability which is close to the calculated upper bound. 

Step (iii) is optimal, since the encountered supervized problem is solved optimally. 
But step (ii) can only provide outputs from the subset of outputs, which separable by 
Hebb couplings. There is no reason to expect that optimal outputs would be among this 
subset. Moreover, not even this subset is systematically searched for its best outputs. In 
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our simulations we find classifications that yield higher stabilities, when just a single U” is 
flipped compared to the output configuration suggested in step (ii). 

We did not calculate the properties of the proposed algorithm analytically, because 
the metastable states resulting from the relaxation procedure are difficult to characterize. 
Instead we discuss the features of Hopffron through the relation with the Hopfield net and 
by analysing our simulations. 

3.3. Features of the Hopflron algorithm 

(In-)dependencefrom the relaraionpmcedure. The results of figure 4 were obtained by a 
deterministic relaxation process: a spin-flip is accepted only if it lowers the energy. But we 
have also tried simulated annealing [ZZ], which yields metastable states with lower energies. 
However, the resulting stability did not increase much. Hence it does not make sense to 
invest into a large amount of computer time for a careful annealing procedure. 

Critical capacify. Apart from its time consumption simulated annealing exhibits another 
disadvantage occuring only for unstructured patterns: At a critical loading a* Y 0.138-’ N 

7.246 the outputs suggested by Hopffron might become less desirable for the following 
reason. 

A careful annealing procedure will lead to local minima of the free energy, described in 
the phase diagram of the Hopfield net [23]. Note, that our perceptron has N units and leans 
p pattems (er, 6;;”. . . . , E;) ,  whereas the corresponding Hopfield net has p sites and stores 
N patterns (# , E,?, . . . , E:)! Consequently, the loading of the perceptron a and the loading 
of the considered Hopfield net a~ relate as a = a*-’. So above a” the corresponding 
Hopfield net has less than = 0.138 patterns to store, meaning that so called retrieval 
states are local minima of the energy landscape [23]. These retrieval states exhibit a finite 
overlap (> 0.97) with one-say the i t h -o f  the stored Hopfield net patterns. Although 
essential for the use of the Hopfield net as an associative memory, this overlap leads, in our 
case, to the dominance of one perceptron coupling (cf equation (17)). The perceptron would 
base its classification mainly on the ith bit of every presented pattern. The stability was 
deceivingly high (N 1). but the performance of the network would mainly depend on the 
functioning of this coupling Ji, depriving parallel distributed processing of its robustness to 
degradation failure. 

In finite systems a* is not sharply defined, forcing us to keep these circumstances 
in mind even below a*. This problem becomes negligible when using the deterministic 
relaxation process instead of simulated annealing, since the strictly downhill dynamics 
will most probably come to a halt in one of the exponentially many metastable spin-glass 
states [24], exhibiting only an overlap of 0(1/,,0 with the stored patterns. 

Generally, for structured and even more for correlated data sets the problem of retrieval 
states disappears completely as the corresponding phase in the Hopfield net vanishes [Z]. 

(Incorrelated outputs. Another interesting point is that we have found the metastable states 
resulting from the deterministic relaxation in step (ii) to be uncorrelated, if the relaxation 
process is started from different random initial states. This is due to the vast number of 
metastable states in the Hopfield net. 

Thereby we are able to encode p input patterns with the minimal set of M = U(log, p )  
perceptrons or hidden units of a multi-layer feed-forward net with binary outputs and still 
have a stable representation. Simply M successive applications of the HoptTron algorithm 
with different initial states in step (ii) will-in every of the M perceptrons-lead to a srable 
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mapping of  the data set onto uncorrelated representations. The resulting one-to-one mapping 
of the p pattems is thus firstly minimal in the number of units and secondly stable. 

Application to clustering. The usefulness of Hopffron with respect to clustering patterns 
drawn from a structured input distribution is shown in [5]. 

4. summary 

A perceptron maps a set of random input patterns into two groups which are separated by 
a hyperplane. We have calculated the maximally possible gap (stability) between these two 
groups for a perceptron which can choose the classification labels (unsupervised learning). 
Extending the method of Gardner and Demda [6], we calculated the stability K as a function 
of the number or of pattems that are to be classified. 

The replica-symmebic result (RS) is unstable and contradicts the condition cr,e < 1. 
Using kt-s tep replica-symmetry breaking (RSBI) we find the asymptotic behaviour K - 
(1 + Inor)/or and agreement with the previous condition. 

Surprisingly, the RSBl results almost coincide with an exact upper bound, which we 
could calculate without using replica theory. This bound is obtained by the Opper- 
Kuhlmann (OK) method [20]. The agreement between the two results suggests, that the 
true maximal stability ~ ( a )  might be very close to these predictions. 

Finding the classification labels with maximal stability is a difficult combinatorial 
optimization problem. We have developed an algorithm for unsupervised learning--called 
Hopffron-which is a combination of a relaxation process of a Hopfield model and the 
AdaTron learning rule for supervized learning. Numerically we have calculated the stability 
~(01)  which is a lower bound for the maximal stability. The algorithm is fast and produces 
high-but presumably not maximal-stabilities. Our results are also discussed in the context 
of data reduction, cluster detection and supervized learning of multi-layer networks. 
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Appendix 

The replicated partition function in (5) reads 

Here Q denotes the replica index. By a cumulant expansion we average over the inputs c,!', 
obeying (6;) = 0 and (6;6:) = Sij&,. Keeping only terms up to 1 / N ,  since we study the 
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properties of the model in the thermodynamic limit N + CO, p = U N ,  yields 

where 

Rewriting the &functions in their intregral representation introduces the conjugates Fob 
and Fa. for q,,b and qaa = 1, respectively. After the factorization with respect to j, the 
probability distribution of vector J := ( J ' ,  J2,. . , , J") is given by 

One-can see or calculate that the self-consistent equations q& = (J"Jb)J for Fob are satisfied 
by Fo;' = gob. Using this identity to eliminate all conjugate variables we get (neglecting 
constants in the exponent) 

with G from (AZ). Equation (A4) Serves as the starting point for the Rs calculation as well 
as the for the application of Parisi's hierarchical RSB scheme. 

Using the identity exp[-gO(y)l = O(y)  exp[-p] + O(-y), the limit p -+ 03 can be 
performed easily. 

In the case of RS (q& = q), the result (6) is finally obtained in the limit q -+ 1, where 
the space of solutions has shrunk to ,one single point, corresponding to maximal stability 
(K' 4 K). 
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