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Mazximal stability in unsupervised learning

A Mietzner, M Opper and W Kinzel

Physikalisches Institut, Julius Maximilians Universitit, Am Hubland, D-97074 Wiirzburg,
Germany

Received 19 September 1994

Abstract. A perceptron can classify a set of random patterns into two groups. The maximal
gap between the two groups is calculated using replica theory. The replica-symmetric solution is
shown 10 be unstable and gives results which are qualitatively different from the one-step replica-
symmetry breaking solution (RSB1). The resuits of a calculation without the replica method are
given, yielding an exact upper bound for the gap which almost coincides with the RSB1 solution.

Finding the classification of a set of patterns with 2 maximal gap is a difficult combinatorial
optimization problem. An algorithm is developed which gives large gaps.

1. Introduction

In recent years the learning ability of neural networks has been extensively studied.
Unsupervised learning has recently attracted growing attention for its ability to adapt to the
environment in a self-organized way [1]. The environment only provides the input, whereas
-no output is specified. In these cases unsupervised learning techniques are frequently used
to discover an underlying structure in the data set.

Typical tasks are the search for meaningful directions in the input data, called principal
component analysis [2,3)] and the detection of clusters, mostly achieved by unsupervised
competitive learning techniques, for an overview see [1].

In this paper we focus on the aspect of the stability of classifications, when neural
networks with sign activation functions are used. Then stability is a measure of how much
input noise can be tolerated without affecting the classification performed by the network.
In unsupervised learning particularly stable mappings can be achieved by assigning an
appropriate output to every given input. Thus maximizing the stability can be regarded as
an interesting criterion to explicitly improve the noise tolerance of a given data processing
task [4].

This is not only useful when a network is supposed to classify a set of input data, but
it is also interesting in the context of supervized learning. Suppose, for example, that a
mapping from noisy input onto prescribed output is to be realized by a multi-layer feed-
forward network. Unsupervised learning can be used to choose a maximally stable first
hidden-layer representation of the inputs and thereby prevent the noise from penetrating
further into the network.

This, however, raises two general questions. What is the maximal stability to be
achieved? And how can the corresponding internal representation be obtained?

We will investigate these questions in the following with respect to the elementary
building block of a multi-layer feed-forward network, the perceptron.
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Figure 1. Two-dimensional projection of a 200-dimensional input data space. The 400 points
were drawn from a Gaussian distribution centred at the origin. The class labels obtained by our
algorithm are indicated as filled and open points respectively, yielding a large gap.

The perceptron has N input units connected with one binary output unit via N continuous
couplings J;. p input paiterns £ of dimension N are presented, but no associated outputs.

Geometrically, the weight vector J of a perceptron defines a separating plane in N-
space, classifying every input £” according to

N
o = sign(h") with the internal field kY := > " J;&'. (1)
j=1

The stability is defined as the distance of the input pattern closest to this plane.

. N
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where « is a measure of how much input noise is suppressed before the output changes,
since the noise on a particular pattern has to alter the field £¥ by at least x before it is
mapped onto a different outpnt,

Apart from our interest in noise suppression the contents of this paper can just as well
be viewed as an investigation of the following geometrical problem (cf figure 1). Suppose
p points in an N-dimensional space are randomly chosen from a known distribution centred
around the origin. We then ask for the average size of the largest linear gap containing the
origin, when p and N tend to infinity such that the loading o = p/N remains finite. The
size of this gap is denoted by 2. The normal vector on the separating plane is J. The
class of patterns above (below) the plane is projected onto 1(—1).

We prefer the network description in the following, switching to the geometrical
interpretation whenever it enhances our understanding.

The stability (gap size) ¥ and the couplings J of the perceptron (orientation of the
separating plane) will be investigated using the analytical metheds of statistical mechanics
as well as computer simulations. :
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Section 2 of this paper contains the calculation of the maximal stability within the
replica theory using replica symmetry (RS) and one-step replica-symmetry breaking (RSB1).
Moreover, the results of an annealed approximation are shown, which almost coincide with
the RSB1 cutcome. In section 3 we will address the problem of explicitly obtaining the
optimal weights .JJ and optimal outputs o € {~1,1}” for a given set of patterns. An
algorithm achieving close to maximal stabilities {s developed and discussed in detail. A
summary is presented in section 4.

Throughout this paper we deal exclusively with uncorrelated—even unstructured—input
distributions. We ask the reader to keep in mind that structured distributions, i.e. redundancy,
would even increase the advantages of unsupervised learning [1]. The proposed algorithm
is very useful, particularly when applied to data with a built-in structure [5].

2. Analytical approach

The maximal stability of the problem discussed 2bove can be calculated extending Gardner’s
method [6]. For unsupervised learning the phase space of dynamical variables has to be
enlarged, now consisting of all the couplings J on the unit hypersphere and all output
configurations o & {—1, 1}7. This introduces discrete dynamical variables to be optimized.
The partition function reads

N
f (1'[ dJj ) (Z TP - N) exp [—BHy] 3)
lO'l i=1

where

@« - Jitfo ") ) 4
o=l g ,
and @(x) is the Heaviside step function. The maximal stability « is defined to be the highest
value of the parameter &', for which H,» = 0 can still be achieved. Therefore we will only
be interested in the ground state of H,, corresponding to the limit 8 — co. In this limit
the constraint (1) is satisfied which states the dependence between J and o

Assuming that In Z is self-averaging with respect to the distribution of inputs, {ln Z}
can be calculated using the replica method [7] with

. dy .
(inZ) = lim a(z) ®)

where (- --) denotes the average over the inputs {£’}, see the appendix.

2.1. Replica-symmetric theory

2.1.1. Maximal stability. The calculation assuming replica symmetry (RS) is outlined in
the appendix, since it will serve as our starting point for further investigations and has never
been published [8]. The RS result, however,

1}
(B! =2 f Dt (t+«)*  with Dt :=%exp [—-£2/2] ©

has been mentioned in [9]. The dependency of the maximal stability « on the loadmg
a = p/N is shown in figure 4.

The optimal choice of outputs, i.e. class labels of the patterns, gives rise to a non-
vanishing gap between the two classes for every finite loading . The asymptotic behaviour
for & tending to infinity is given by k ~ a~1/3.
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2.1.2. Distribution of fields. Given the stability «" the probability density w.(k) to find
the field k—or equivalently a pattern with distance & from the separating plane—reads

we(h) = f % exp [—ikh] G(k), with g(k)z(WJe-vw) -

where the characteristic function G can be calculated as

N N

Glk) = (ﬁli:-{.lo z7y f (['[ djj)a(z JF - N) exp [—BHy] exp[ikh*=1]. (8)
[o} =1 j=l1

Since (- - -) again denotes the quenched average over all pattern sets, no particular pattern is

distinguished from the others. Therefore calculating the distribution of the field of pattern

number one means no loss of generality.

By 7% we denote a thermodynamic average, where only combinations of the
dynamical variables J and o are allowed to contribute, which correspond to stabilities of
at least «’. For arbitrary «’ equal to or below the maximal stability « this is achieved by
evaluating the thermodynamic average in the limit 8 — co.

To perform the quenched average over the patterns we need another replica trick

Z7 = lim Z"*. ©)

n—0

Note, that only Z~! in (8) is replicated n — 1 times. Thereby we again get the n-
times replicated partition function (Al), but with an additional, not replicated, factor of
exp(ikhgzi) inside the integrals. & can be interpreted as an external field that probes the
field of pattern 1 in replicon 1. In the thermodynamic limit N — oo this perturbation of
just one of NV fields becomes negligible with respect to the saddle-point equations, keeping
their solutions the same as in the preceeding section. After taking the limit n — 0 these
solutions for the order parameters can be used in the limit § — oo, Then the limitg — 1
corresponds to maximal stability.

Nevertheless, due to the different replica trick (9), compared to (3), the perturbation
term does determine the characteristic function G. The final Fourier transformation results
in
—~H[2

= —1 — _ e
we(h) = [@(k) ~ 3] 8(Ik] — k) + O(lh| — &) .k
A b.peak at [2| = x and a Gaussian tail for |h| > « emerges, qualitatively similar to the
field distribution of maximal stability for random outputs [10]. The crowding of patterns at
h = £« in figure 1 might give an idea of the presence of §-peaks. The distribution (10) can
also be derived by probabilistic arguments [11], assuming—just as in the RS theory—the
existence of a unique optimal solution for (J*,0,). In this case the peak weight equals
the probability of an additional pattern £P*! not satisfying the constraint £#*! > k, which
can be calculated easily.

However, from a geometrical point of view the §-peaks correspond to patterns, that lie
exactly on the two planes, which are a distance 2« apart and paraliel to the separating plane.

The fraction of patterns on these two planes is given by g = @[2¢ (k) — 1]. Inserting
#x(e) from (6) we find an unbounded growth of ey ~ ¥, when o tends to infinity, see
figure 3.

This indicates that the RS theory is not exact, since o,y > 1 means that more than
N patterns lie on two parallel planes implying that every N subset of them is linearly
dependent. Therefore the set of patterns would nor be in a ‘general position’, stating a
contradiction to uncorrelated randomly chosen inputs £” [1]. Thus the 28 result for « (&)
has at least to be rejected for loadings above & ~ 1.14.

(10
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2.1.3. Local stability analysis. Following standard calculations [6,12] we find that the
replica-symmetric saddle-point is locally stable wherever the de Almeida—Thouless condition
ayyz < 1 is satisfied. The evaluation of 3, and 32 in the limit § — oo and ¢ — 1 with
the usual scaling 8(1 — g} = ¢ can be cast into the same form as in Bouten’s paper [13]

+oo d 2
oYY = a.'f Dt (—-[Ao(t, F)— t]) <1 (11)
—co dr
where in our case
[0 for 1< —«
(—x—t)@(«/i—a_—fc—t) for —«x<t<0
[hoft,0) —t] =4 O for t=0 )
(+c — 1) O(V20 —k +1) for O<t<k ' 7
0 for «<t.

For ~/2¢ < 1, which corresponds to points of the o, k-plane above the RS « (@) result, the
function Ap(r, o) — ¢ exhibits two discontinuities at 1 = —x + V25 and 1 = k — /20,
respectively. For +/20 > « corresponding to points on and below the RS « () curve, a
discontinuity persists at t = 0. Therefore the derivative in (11) yields at least one é-function
which, being squared, lets the integral diverge to plus infinity. So no matter what result for
k(c) was obtained in RS, it is locally stable only for ¢ =.0 or & = 0. Consequently, the
whole RS result (6) is unstable.

The instability obtained indicates disconnected solution volumes in J-space for all
loadings, which must be due to the fact that in unsupervised learning differemt output
configurations yield the same maximal stability realized by different couplings. Only for a
fixed output configuration (supervized problem) is the solution J unique [14].

2.2. Replica-symmetry breaking

From the instability of the whole RS solution and the pathological behaviour of rxff? we
expect a strong replica-symmetry breaking (RSB) effect. We seek to improve the RS result
(6) by applying the first step of Parisi’s hierarchical RSB scheme [7] to (A4). The =
replica are grouped into n/m clusters of m replicas. The overlap between replicas within
the same cluster is described by g;, whereas replicas from different clusters have the
overlap go, leading to the common order parameters go, 41 and m [15]. Similarly to related
problems [16] we get

1

F(ln Zro0) = Extrg g m m™" sy + 51] (13)
where

30t + 41—402)0—.'6' m

so= | D¢t ln]DZ CIJ((

’ f 21 V11—

5 =-1-|:m1n1— +1n(1+mq]—q°)+ a1 ]

tT2 i 1—q I — g1 +mig1 — g0}

Analogous with the RS calculation the maximal stability « can be obtained directly by
g1 — 17, In this lmit a diverging s; would dominate the finite contribution from s
leading to order-parameter values independent from « and «. Therefore the usual scaling
ansatz of m — 0 so that ¢ = m/(1 — ¢) remains finite, is used to resolve every imbalance
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between sp and 51. Replacing g; through this ansatz the saddle-point equations need to
be solved in the limit m — 0. For reasons of stability [17] the solutions gf, ¢™ have to
correspond 1o a minimuim:

_mi Cqo _
0=%e [1 Tell—qo + ol el — )] +2as6 f)] (14)
with
= i (Bt +VT—qpz)e —« ]"’
s(go, ) _nl:l—lﬂ)th Insz L;ﬂ@( w7 ) ) (15)

The minimum in (14) has to be zero in order to satisfy the saddle-point equation for m
in the limit = — 0. This immediately determines the critical loading ¢f*®! in an implicit
way:

_ g/ +e* (1 —gg)) +In(1+ " (1 —g))

RSE1 —
C!c (K) - 25(43, C*)

(16)

with s(gg, ¢*) from (15).

We find a solution leading to «(e) considerably below the RS result (figure 4). The
asymptotical behaviour for ¢ tending to infinity is qualitatively different from the RS
asymptotic, it now reads « ~ o~ ![lne + 1 + O((na/x))].

The order parameters ¢ and go are plotted against « in figure 2. Interestingly go tends
to zero for finite «. The flatness of the minimum corresponding to our solution is such that
the graphs shown in figure 3 and figure 4 could just as well be produced with fixed gy = 0
and minimizing merely with respect to ¢. go = 0 indicates that the solutions in J-space
are not correlated, similar to the situation in the parity machine [18] and the random energy
maodel [19].
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Fignre 2. QOrder parameters ¢/ 100 {broken curve) and gq (full curve) of the RsB1 solution versus
loading c.
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Figure 3. The fraction o.q of patterns at smallest distance predicted by s (broken curve), RSBI
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Figure 4. Maximal stability versus loading & for optimal outputs calculated in RS (broken curve),
withia RSB1 (full curve) and the exact upper bound from the ok method (full curve), The whole
RS solution is unstable. Simulations investigating the performance of the HopfTron algorithin
were performed with max (p, M) = 400 usiag a deterministic dynamic. Stars (crosses) show the
stability & (xmenb), after (before) the optimization of the couplings by AdaTron. For comparison
the maximal stability for random outputs in the supervized case [€] is alse shown (broken curve},

2.2.1. Distribution of fields. It was a.s which already proved most of the RS result unstable.

In order to make X35! accessible we calculated the distribution of fields, closely following



2792 A Mietzner et al

the description for the RS case.
The explicit form of w,(A, g, ¢*), still depending on the order parameters, is not very
illuminating. Tt also shows two 4-peaks and Gaunssian tails, but with different prefactors

compared to the RS field distribution. The sum of the §-peaks times « again yields oR35!

shown in figure 3. We find 5" < 1 to be satisfied for arbitrary loading . So the R$B1
result is in agreement with the inputs being in the ‘general position’.

Although we cannot conclude from af$F! < 1 that the RSB1 solution is stable, we refrain
from a lengthy local stability analysis, for two reasons. Firstly, local stability of a replica
solution need not be a reliable criterion for the exactness of the result. Secondly we were
able to obtain a more meaningful result than the one from RSB1 by a method due to Cpper

and Kuhlmann (0K method).

2.3. An exact upper bound

In this section we will quote the results of an alterative and very powerful method due
to Opper and Kuhlmann (OK method) for obtaining the maximal stability analytically. The
method will be discussed in detail elsewhere [20]. The obtained results—if not exact—are
at least an exact upper bound for the maximal stability.

Interestingly the resulting functions & (&) and e.r(er)} are very close to the RSBI solutions,
figures 3 and 4. The relative deviations are at most 2% and disappear for ¢ — co.
Furthermore, the RSBI1 result satisfies the upper bound for any «.

3. Algorithmic approach

3.1. Formulation of the problem

The optimal couplings of the perceptron with maximal stability can generally be written as
i 14

J= ﬁzx”a"&” an
y=1

where x¥ is called the embedding strength of pattern v [10, 21].
The task to maximize the stability can be restated in terms of the embedding strengths,
substituting (17} into (2). It is equivalent to minimizing the quadratic form
1 P.r
i PR | ()
with respect to ¢ and o € {—1, 1} under the constraints

P 1 N
Jghot =ihot =0} Cpo®s” 21 where Cui=< ; gler. (19)

=1

Then the stability is given by & = 1//Q (cf equation (2)).

If the outputs oV were known (supervized case), the constraints (19) would become
linear and a unique solution would exist [14], which, for example, could be found by the
AdaTron algorithm [21].

But in the unsupervised case p patterns £” in N-space are given and an optimal output
assignment to these points has to be found. For illustration one may think of p given points
&Y in N-space, which ought to be painted either black (¢¥ = 1) or white (g¥ = —1) in
such a way that the maximal gap between the black and the white set of points emerges
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(cf figure 1). This is a difficult task, because 27 possible configurations exist and changing
one single colounng (output) may completely alter the orientation of the separating plane
and the maximal size of the gap.

However, finding the outputs with maximal stability is a problem of combinatorial
optimization. For a given set of ¥ the corresponding stability has to be obtained by the
AdaTron {or similar) learning algorithm. Hence most of the combinatorial optimization
algorithms like simulated annealing [22] would require an immense computational effort.

A new method to find labels 0¥ with high stability is proposed in the following.

3.2. The HopfTron algorithm

The main idea to determine good output configurations comes from the consideration of
the constraints (19). For the moment we neglect the possibility to optimize = and set all
x¥ =1, corresponding to Hebb couplings in the perceptron, see (17). The constraints take
the following form:

N -
o4 3" Cwo®” 20 . with Cpui= %25}‘5;‘"- : (20)
v#(R) j=1
Let us now interpret ¢ as the spin state of an attractor neural network with couplings
C,, between spins o¥ and o*. This network is a Hopfield net and has been thoroughly
studied [23]. In that context (20) describes the conditions for a metastable state, , since the
internal field of the Hopfield net 4% = zvaé(n) Cuvo? and the spin g = mgn(h“) at site
& have the same sign.

Thus metastable states o of the Hopfield net provide outputs o for the perceptron,
which satisfy the constraints (19). So we achieve a non-zero stability k = 1/4/@ for
every finite loading . This is remarkable, since we have not yet put any effort into the
optimization of . Or in other words, we have obtained a classification &, which is linearly
separable even for a perceptron with Hebb couplings (x” = 1}. These cutputs must indeed
be special, since random outputs are not linearly separable for any non-zero loading, when
Hebb couplings are used [1].

Metastable states o can easily be constructed by a relaxation process from a random
initial state. With such a classification we optimize the couplings (or x, respectively} to
achieve maximal stability. We used the AdaTron algerithm [21] for this last step, calling
the resulting algorithm HopfTron.

We shall briefly summarize the HopfTron algorithm:

Step (i) Calculate the correlation matrix € (equation (19)).
Step (i) (Hopf-): Use.some dynamics to relax from a random initial state into a
metastable state o of the Hopfield net with couplings C,,, and C,,, = 0. The resulting
- oV values are the classification labels of the patterns £°.
e Step (iii) (-Tron): Construct the perceptron vector J realizing thls c]asmﬁcanon with
maximal stability using the AdaTron algorithm.

The resulting stabilities with Hebb couplings (before step (iii)) and with optimal
couplings (after step (iii}) are shown in figure 4, see also figure 1. This last (supervized)
learning step yields a stability which is close to the calculated upper bound.

Step (iii) is optimal, since the encountered supervized problem is solved optimally.
But step (ii) can only provide outputs from the subset of outputs, which separable by
Hebb couplings. There is no reason to expect that optimal outputs would be among this
subset. Moreover, not even this subset is systematically searched for its best outputs. In
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our simulations we find classifications that yield higher stabilities, when just a single oV is
flipped compared to the output configuration suggested in step (ii).

We did not calculate the properties of the proposed algorithm analytically, because
the metastable states resulting from the relaxation procedure are difficult to characterize.
Instead we discuss the features of HopfTron through the refation with the Hopfield net and
by analysing our simulations.

3.3. Features of the HopfTron algorithm

{In-)dependence from the relaxation procedure, The results of figure 4 were obtained by a
deterministic relaxation process: a spin-flip is accepted only if it lowers the energy. But we
have also tried simulated annealing [22], which yields metastable states with lower energies.
However, the resulting stability did not increase much. Hence it does not make sense to
invest into a large amount of computer time for a careful annealing procedure.

Critical capacity. Apart from its time consumption simulated annealing exhibits another
disadvantage occuring only for unstructured patterns: At a critical loading a* ~ 0.1387! ~
7.246 the outputs suggested by HopfIron might become less desirable for the following
reason.

A careful annealing procedure will lead to local minima of the free energy, described in
the phase diagram of the Hopfield net [23]. Note, that our perceptron has N units and learns
p patterns (£, &5, ..., &y), whereas the corresponding Hopfield net has p sites and stores
N patterns (£}, £2, ..., &P)! Consequently, the loading of the perceptron & and the loading
of the considered Hopfield net oy relate as ¢ = ay~!. So above a* the corresponding
Hopfield net has less that ey = 0.138 patterns to store, meaning that so called retrieval
states are local minima of the energy landscape [23]. These retrieval states exhibit a finite
overlap (= 0.97) with one—say the ith—of the stored Hopfield net patterns. Although
essential for the use of the Hopfield net as an associative memory, this overlap leads, in our
case, to the dominance of one perceptron coupling (cf equation {17)). The perceptron would
base iis classification mainly on the ith bit of every presented pattern. The stability was
deceivingly high (= 1), but the performance of the network would mainly depend on the
functioning of this coupling J;, depriving parallel distributed processing of its robustness to
degradation failure.

In finite systems «* is not sharply defined, forcing us to keep these circumstances
in mind even below o*. This problem becomes negligible when using the deterministic
relaxation process instead of simulated annealing, since the strictly downhill dynamics
will most probably come to a halt in one of the exponentially many metastable spin-glass
states [24], exhibiting only an overlap of O(1/,/p) with the stored patterns.

Generally, for structured and even more for correlated data sets the problem of retrieval
states disappears completely as the corresponding phase in the Hopfield net vanishes {25].

Uncorrelated outputs. Another interesting point is that we have found the metastable states
resulting from the deterministic relaxation in step (ii) to be uncorrelated, if the relaxation
process is started from different random initial states. This is due to the vast number of
metastable states in the Hopfield net.

Thereby we are able to encode p input patterns with the minimal set of M = O(log, p)
perceptrons or hidden units of a multi-layer feed-forward net with binary outputs and still
have a stable representation. Simply M successive applications of the HopfTron algorithm
with different initial states in step (ii) will—in every of the M perceptrons—lead to a stable
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mapping of the data set onto uncorrelated representations. The resulting one-to-one mapping
of the p patterns is thus firstly minimal in the number of units and secondly stable.

Application to clustering. The usefuiness of HopfTron with respect to clustering patterns
drawn from a structured input distribution is shown in [3].

4. Summary

A perceptron maps a set of random input patterns into two groups which are separated by
a hyperplane. We have calculated the maximally possible gap (stability) between these two
groups for a perceptron which can choose the classification labels (unsupervised learning).
Extending the method of Gardner and Derrida [6], we calculated the stability « as a function
of the number « of patterns that are to be classified.

The replica-symametric result (RS} is unstable and contradicts the condition ey < |,
Using first-step replica-symmetry breaking (RSB1) we find the asymptotic behaviour « ~
(1 +Ina) /o and agreement with the previous condition.

Surprisingly, the RSBI results almost coincide with an exact upper bound, which we
could calculate without using replica theory. This bound is obtained by the Opper—
Kublmann (0K) method [20]. The agreement between the two results suggests, that the
true maximal stability « () might be very close to these predictions.

Finding the classification labels with maximal stability is a difficult combinatorial
optimization problem. We have developed an algorithm for unsupervised learning—called
HopfTron—which is a combination of a relaxation process of a Hopfield modei and the
AdaTron learning rule for supervized learning. Numerically we have calculated the stability
k(ce) which is a lower bound for the maximal stability. The algorithm is fast and produces
high—but presumably not maximal—stabilities. Our results are aiso discussed in the context
of data reduction, cluster detection and supervized learning of multi-layer networks.
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Appendix

The replicated partition function in (5) reads
dh}dx] a
7 =2 (11 o) (/5 [e(5 - )] |
x ];Iexp[ix: (h; ~ 7 JZ Jf&;’)] lv_d[ exp [mﬁ@(fc' —-riel}]. (Al

Here a denotes the replica index. By a cumulant expansion we average over the inputs 7,
obeying (£/) = 0 and (’g‘}"g‘f‘ } = 8;;8,,. Keeping only terms up to 1/¥, since we study the
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properties of the model in the thermodynamic limit N — o0, p = aN, yields

(z") = (0 quab Hfd.;’") exp [INaG)
<[Ts(W - 07 ) TTo(Waw = 577
a J a<b i

where (A2)

exp [G] = (l—[ f dx;iha) exp[—-ﬁ Z@(fc’— [ha l)]
X exp[i Z:xaha — E GabXaXp — % ng'] }
a a<b a

Rewriting the 3-functions in their intregral representation introduces the conjugates Fyp
and F,, for gqp and ge. = 1, respectively. After the factorization with respect to j, the
probability distribution of vector J := (J!, J2,..., J") is given by

Py =,/ ?2"’ f exp[—1JTFJ] where F, 1=iF, Fup i=2iF,,. (A3)

One can see or calculate that the self-consistent equations g, = (J*J?),; for Fyy, are satisfied
by B 5 = gap. Using this identity to eliminate all conjugate variables we get (neglecting
constants in the exponent)

(Z") = (l:[b [ dqab) exp I:NO.’G —-N ln(U f DJ") exp (— Z oG d "’)] (A4

a«<b

with G from (A2). Equation (A4) serves as the starting point for the RS calculation as well
as the for the application of Parisi’s hierarchical RSB scheme.

Using the identity exp[—B®(y)] = @(y}exp[—F] + @(—), the limit § — o0 can be
performed easily.

In the case of RS (gas = ), the result (6} is finally obtained in the limit g — 1, where
the space of solutions has shrunk to one single point, corresponding to maximal stability
(' > K).
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